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Covariant derivation of the classical rotational dynamics of 
an extended charge. Analysis of a non-relativistic model 

J L JimCnezf, R Blanco aud L Pesquera 
Departamento d e  Fisica Teorica, Facultad de Ciencias, Santander,  Spain 

Received 19 July 1984, in final f o r n  14 November 1984 

Abstract. In this work we present a covariant rela!ivistic derivation of the equation of 
motion for a spinning extended charge.  From it  we study in the non-relativistic limit the 
rotational dynamics of a rigid spherical charge, comparing our  results with previous ones.  
In particular some properties of this model concerning runaway and  self-oscillating solli- 
tions are discussed. We show that,  unlike for translational motion, there are  no runaway 
solutions.  U'e also analyse the rotational motion in presence of an  external field. 

1. Introduction 

The study of the dynamics of charged particles with structure has revived the interest 
of physicists at different times since the end of the last century (Abraham 1903, Herglotz 
1903, Lorentz 1956, Schott 1912, 1936,1937) up  to the present day (Bohm and Weinstein 
1948, de  la Pei7a et a1 1982, FranGa et a1 1978, Jimtnez and Montemayor 1983a, Markov 
1946). (Excellent reviews of the equation of motion for charged particles can be found 
in Erber (1961) and Caldirola (1979).) However, these stirdies have been centred 
m a i d y  on  the analysis of the translational motion, whilst works about the rotational 
motion are rather scarce and  in many cases they only deal with particular situations 
(for instance, the non-relativisitc limit (JimCnez and Montemayor 1983b), constantly 
directed angular velocity (Daboul and Jensen 1973, Daboul 1975, etc.), having obtained 
contradictory results (Jimenez and Montemayor 1983a, b, Rafiada and VBzquez 1982, 
1984). In all these works a covariant derivation of the equations of motion is missing. 
The importance of this becomes clear when analysing the translational case, in which 
the correct definition of the four-linear momentum does not coincide with the one to 
which a purely non-relativistic analysis would lead (Rohrlich 1965, 1970, Jackson 
1975). Due to all this, the main purpose of this work is to give a correctly covariant 
relativistic derivation of the equation of rotational motion for an extended charge. 

Another important point is the study of the properties of the rotational motion of 
the charge. Nevertheless, this crucially depends on the model we use for the structure 
of the charge. Most of the studies done u p  to now, both in the translational and the 
rotational case, employ a rigid spherically symmetric charge distribution. Obviously 
this occurs in a unique frame of reference. The Lorentz transformation enables us to 
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know the structure in another inertial frame, where it is no longer spherical. A detailed 
study of the rigid charge has been carried out by Nodvik (1964). However, the problem 
is not over because the rigidity contradicts the principle of relativity of finite signal 
transmission velocity. Therefore, the study of a rigid charge can only be coherently 
made in the non-relativistic limit. 

Our second aim is to obtain the non-relativistic limit of the equation of motion for 
a rigid spherically symmetric charge, and to study a few properties of.the motion in 
order to compare them with previous results (Daboul and Jensen 1973, Daboul 1975, 
JimCnez and  Montemayor 1983b, Rariada and  Vazquez 1982, 1984). 

The outline of the paper is as follows. In § 2 we emphasise the necessity of a 
covariant derivation of the equation of motion for a spinning extended charge, that is 
obtained in B 3. In § 4 we consider a rigid spherical charge in the non-relativistic limit. 
Some properties of this model concerning runaway and self-oscillating solutions are 
discussed in § 5. Section 6 is devoted to the study of the rotational motion of a 
non-relativistic charge in presence of an external field. Section 7 contains a summary 
and discussion of the main results of the paper. We also include three appendices to 
obtain some results that are used in the main text. 

2. Necessity of a covariant derivation 

The derivations of the equation of rotational motion that can be found in Daboul and  
Jensen (1973), Daboul 11975) and Rariada and Vazquez (1982, 1984) rest essentially 
upon two assumptions. On the one hand, taking into account that both works consider 
a rigid spherical charge, they identify the intrinsic angular momentum J (spin) with 
Iw, w being the angular velocity and I the moment of inertia of the mass distribution. 
On the other hand, they consider that the variation of the angular momentum J with 
time is due, besides the external forces, to the Lorentz force that the self-field of the 
charge produces on itself. Although this seems trivially correct, the study of the 
translational motion shows us that it is not necessarily so. An analysis of this point 
can be found in Rohrlich ( 1965, 1970) and Jackson (1975), which also indicate the 
reason for the mistake and its solution. In order to know how to undertake correctly 
the rotational motion we sketch in the following the problem that arises in the 
translational case as well as its solution. 

The situation is similar to the rotational motion. The difference is that now we are 
interested in the equation for the linear momentum p = myu instead of the angular 
momentum. In the line of thought indicated above, the starting point would 
equation 

where E, , ,  and B,,,  are the self-fields of the charge. (Remark that in Jackson 
no mechanical mass is considered. that is. m = 0.) 

be the 

( 1 )  

(1975) 

With the aid of the Maxwell equations, and assuming that the acceleration goes 
to zero when t + -a, it is easy to see that the self-force of equation ( 1 )  may be written 
as 
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whence equation ( I )  becomes, using the proper time, d 7  = y- l  dt, 

The meaning of this equation is that the external forces produce the variation of 
the total momentum of the charge that includes the mechanical momentum p and the 
electromagnetic momentum Pel,, which would be 

P e l ,  = (c/4.rr) d3r(E,, ,  x 4J. (4) 5 
The problem arises that p and yFe,, constitute the space components of four- 

vectors, whilst the quantity defined in equation (4)  does not. It is then necessary to 
define in a covariant way the electromagnetic momentum of the charge. The correct 
definition, which can be found in Rohrlich (1965, 1970) and Jackson (1975), leads to 
modifying equation (3).  For the sake of brevity, we refer the reader interested in the 
details to Rohrlich (1965) and Jackson (1975). The non-relativistic approach of the 
equation that is obtained when the momentum of the electromagnetic field is correctly 
defined can be found in de  la Pefia et a1 (1982). 

The defect pointed out appears for instance in Bohm and Weinstein (1948). These 
authors, who only deal with the non-relativistic equation, start from equation ( 1 ) .  This 
leads them to an  erroneous final counting of the mass of the charge, which has important 
consequences in the behaviour of the trajectories. In the exactly relativistic equation 
the mistake would be even more important. 

What we have exposed makes doubtful the possibility of writing, for the rotational 
motion, 

as is done in Rafiada and Vazquez (1982, 1984). 
Using this line of thought, and with the analysis we have exposed as a basis, JimCnez 

and Montemayor (1983b) have looked for the correct equation introducing a definition 
of the momentum of each elementary volume of the mass distribution according to 
the remarks made above. However, this way of undertaking the problem is not very 
rigorous, which has impelled us to obtain the covariant derivation. It is clear that 
different results are obtained by JimCnez and Montemayor (1983b) and  Ratiada and  
Vazquez (1982, 1984). Only the covariant derivation will allow us to elucidate which 
of these is the right one, and the limits of validity of each equation. 

3. Equation of motion for the rotation of a free extended charge 

Our system consists of mass and charge distributions in the presence of their own 
electromagnetic field. The stability of the electron requires the existence of a field of 
cohesive forces in order to compensate for the mutual repulsion. 

The study of these forces, first outlined by PoincarC (see Miller 1973), lies outside 
the scope of this paper. However, it is reasonable to assume that they d o  not contribute 
to the global motion of the charge, that is, both the net cohesive force over the whole 
charge and its net torque about any point are zero. Now, let T K ,  TZk and T:'' be 
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the energy-momentum tensor corresponding, respectively, to the mass distribution, 
the electromagnetic self-field and the cohesive forces. Convervation of energy and  
momentum demands the following relation to be fulfilled: 

d, ( I.”,” + T;; + T:”) = 0. (6) 

In order to study the global rotation of the charge we have to give a covariant 
definition of the angular momentum. Let z P ( 7 )  be the world line oi‘ one fixed point 
0 of the charge distribution. If u p  = zw denotes its four-velocity, we introduce the 
hypersurface E( 7 )  defined by the relation 

( 7 )  

It represents the three-space ( t  = constant) in the rest frame Si”’ of the point 0. Let 
dc7’ = ( u’/c) dc7 be the element of hypersurface of Z( 7 ) ,  where d a  is Lorent invariant 
and coincides with the element of volume of the three-space in the frame S‘O’, 

( X p  - Z w ( T ) ) U , (  7)  = 0. 

It is easy to see that, in the non-relativistic limit, by using the relation? 

Jk = i ~ ~ ~ ,  J i ,  (10) 

we obtain the usual angular momcntum 

J =  d ’ r p ( r ) ( r x u ) ,  J i l l )  

where p ( r )  stands for the mass density. 

distribution 
To see that, we introduce in equation (9) the energy-momertum tensor of the mass 

TZ’ = - p  ( X )  U’ ( X )  t” ( x) ,  (12 )  

where p ( x )  denotes the proper mass distribiltion, that is the mass distribution of the 
point x in its rest frame, and u ” ( x )  its four-velocity: 

J : “ = c - ~  ~ ( x ) [ ~ ’ ” ( x ) u ” ( x ) x ” -  u ” ( x ) v ” ( x ) x ~ ] u , ( T )  da: (13 )  

Specialising to the rest frame of the point 0, u ” ( T ) = ( c , O ) ,  whence equation (13) 
becomes 

I 
(14) JK(”’= - c - I  I p ( t ,  r ( ~ ) ) ( u I l x y ( o )  - u v x P ~ o ) ) u O  d3,.(”’. 

In the non-relativistic limit we have 

t’@(x) = (CY, U Y )  - (c, U), 

f Here, Latir! indices run over the space components 
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and the angular momentum 

F ( t, r )  Eki j  (x d3 r, i j k  = -tEki, CL(?, r ( 0 ) ) ( y ’ x j ( O l  - u j x i ( 0 ) )  d3r(0)= i 
results, which coincides with the expression ( 1  1).  

Because we are going to study the rotational motion, we suppose that the external 
forces do not produce variation of the net momentum of the charge, and then there 
is a point of the distribution whose velocity remains unchangedt. Then we choose 
this point as the one used to define the hypersurface X( T), that is the point 0. We also 
work, for the sake of simplicity, in the frame in which the space components of Z@ ( T)  

coincide with the origin 

Z p (  7) (Ct, 0) (CT, 0) (15) 

whence the proper time of 0 is the coordinate time of our frame, and X(T) coincides 
with the three-space. Then 

d u p  = (1,O) d’r, (16) 

and equation (9) becomes 

Jr( t )  = c- ’  d3r[ TO,( r, t ) x ”  - r“c( r, t ) x p ] .  5 
In order to obtain the equation of motion, we derive equation (17) with respect to 
time, and using equation (6) we get 

where we have supposed, according to our assumption, that the net torque due to the 
cohesive forces is zero. 

This equation can also be derived from a general relation obtained by Kaup (i966) 
within the context of special relativity, specialising another one by Dixon ( 1964) valid 
in the general theory. Following our notation, Kaup’s relation can be written as follows. 
Let A;:::* denote some arbitrary tensor of any rank, depending on both x@ and ~ ~ ( 7 ) .  

Here, x p  is an arbitrary point on the hypersurface X(T). The tensor A;:::* fulfils the 
relation 

where uoL = d v * / d r  and ds /c  = d7 is the proper time. 

v P / c  = (1, O ) ,  u p  = (0 ,O)  and du* = d3r( 1 , O )  whence equation (19) reads 
In our case, for the frame of reference we have chosen T =  t, z * ( ~ ) = ( c t , O ) ,  

i Although this last affirmation seems obvious, it is not so trivial. We know that in certain approaches there 
are solutions that fulfil it. But even in these cases, other solutions that demand a different treatment are 
possible (Bohm and Weinstein 1948). 
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Specialising to the tensor 

and using equation (6), we obtain equation (18). 
The derivation we have made turns out to be more transparent in our case. 
We return to equation (18) and introduce the relation 

ah T:& = c- '  F:; j ,  (22) 

where j" stands for the four-current and FCY for the electromagnetic tensor of the 
self-field of the charge. 

Writing now j "  = ep( t, r ) c (  1, u/c )y (  U), where U is the three-velocity of an arbitrary 
point of the distribution, p the normalised (to unity) proper density of charge, and  e 
the total charge, we get by using equations ( I O ) ,  (18) and (22) 

d 3 r ( r X ( E c , , + c - ' u X X ~ , , l p * ( t ,  r ) ,  ( 2 3 )  

where p* = 'yp is the charge density in the frame of reference in which we are working. 
This equation is completely exact. On the contrary, equation ( 5 ) ,  as used in Rariada 

and Vazquez (1982, 1984), is only valid when p * = p ,  i.e. for small velocities. (Note 
that for spherical charges p, in contrast with p * ,  is independent of t . )  Moreover, the 
identification J = Iw loses its meaning in the relativistic case, in the sense that I should 
be velocity dependent. 

It is to be noted that, unlike the translational motion, the self-force suffices to give 
an  account of the motion. In the translational case an extra term appears in the 
covariant definition of the linear momentum. Based upon this result, JimCnez and  
Montemayor ( 1983b) studied the rotational motion, introducing a definition for the 
angular momentum that includes this extra term in the linear momentum of each 
element of the charge. We want to emphasise that the result we have obtained tells 
us that in the purely rotational motion such a procedure leads to a wrong equation. 
The non-existence of this extra term leads to different properties, especially as concerns 
the runaway solutions and the renormalisation of I ,  as we shall see in 00 5 and 6. 

4. The equation of motion for a rigid spherical non-relativistic charge 

It is clear that a theory of extended charges requires the elaboration of a model about 
the structure of charge. However, in order to begin to obtain some insight about the 
behaviour of these systems, this problem can be avoided if a rigid spherically symmetric 
structure is considered. This contradicts the postulates of relativity, because a perturba- 
tion in one point of the distribution would produce an  instantaneous effect over the 
whole charge. Such a phenomenon shows the necessity of a more elaborate model 
where all contradictions have been removed. However, if a non-relativistic analysis is 
made, the rigid model can be accepted as valid. Moreover it leads, without too many 
difficulties, to some results. 

Let us see how expression (23) reads in this case. Firstly, the point z " ( t )  will be 
made to coincide with the geometric centre of the charge. Moreover 'y- 1 and we 
may write p * ( t ,  r ) - p ( r ) .  The self-field will be calculated by means of the retarded 



Rotational dynamics of an extended charge 1179 

potentials 

where t ,  denotes the retarded time, t ,  = t - c-llr - r’ / .  Note that the spherical symmetry 
makes p independent of time. For this the scalar potential does not include retardation 
effects. Let us consider separately the contributions of the self-electric field and the 
self-magnetic field 

NE) = e d3r( r x E, , , )p(  r ) ,  (25a) I 
N g ’ =  ( e / c )  d3r[r X ( V  xB(, ,)]p(r) .  (256) I 

Taking into account that 

u( t, r) = o( t )  x r, (26) 

where o ( t )  stands for the instantaneous angular velocity, we have, using equations 
(24) and (25), 

N g ) = ( e / c )  d 3 r p ( r ) r *  B,,,(r, t ) [ o ( t )  xr].  J 
Note that, because of the spherical symmetry and the non-retarded character of 4, 
this term does not contribute to NE’.  Explicit calculation of the above quantities can 
be found in appendices 1 and 2.  Here we only give the result 

N($ = - Ere2 dt’ G( t - t’)o( t ’ ) ,  Sr, 
N g i  = ! r e 2 w (  t )  x dt’  G( t - ?‘)ai( t ’ ) ,  (286) 

where 

= Som k [ p ‘ (  k)]’ sin( kct) dk, 
C 
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The expression we have obtained for NE' corrects the one obtained by JimCnez and  
Montemayor (1983b). 

Let us now express the angular momentum as a function of o. From equations 
(1 1) and (26) the non-relativistic limit of J can be written as 

J = Imeco (31) 

where I,,, stands for the moment of inertia of the spherical mass distribution 
P 

I,,,= J d 3 r ~ ( r ) r 2 .  

Finally, from (23) and  (28) the equation of motion may be written 

I mec w=--".rre2 3 [ ' d t '  G( t - r ' ) & (  t ' )  + !.rre20 ( t )  x [ * dr' G (  t - t ' )  w (  t ' ) ,  (33) 
J - x  J -a 

This equation coincides with the one obtained by Rariada and Vazquez (1982, 
1984). Nevertheless in these papers it appears as an  exact relativistic equation, whilst 
our derivation shows, as has been pointed out at  the end of 9 3, that it is only valid 
for small velocities. Moreover the moment of inertia should be dependent on the 
angular velocity unless terms of order ( v / c ) ~  are neglected. Other problems arise from 
the rigidity condition. We d o  not enter into discussion about them because the 
inadequacy of the rigidity in a relativistic system is clear. Then we just emphasise that 
equation (33) is correct only up  to terms v 2 / c 2 .  

As concerns the second term of the RHS of (33), we are going to show that, if the 
angular acceleration does not change very quickly, it is of order v / c  with respect to 
the first term. Let re be the radius of the electron, and  7, = re/c. The condition of 
non-relativistic velocities can be expressed, imposing that the velocity of a point 
separated from the origin of the charge a distance re is much smaller than c, that is 

w7,= u,/c<< 1. (34) 

Moreover it is easy to see with the aid of equation (29) that the lifetime of the 
kernel G ( t )  is of order 27,. 

If we now suppose that 

IL;i/7,<< I & /  (35) 
the first term of the R H S  of (33) can be estimated to be of order IhIv where 

v = !,e2 lox G( t )  dt. 

As concerns the second term, we can estimate it as follows. From condition (34) 

(37) 

in the time interval in which G is not negligible, o has shifted at most by an angle 

Acp - IAwl/iwi - &,/w 

1qw2 sin Acpl < v w * A p  

I (  r p 2  sin Acp) /+  < UT,- v , /c<<  1 

whence the value of that term is of order 

(38) 
The ratio of both terms is then of order 

(39) 

which is the result we were !ooking for. 
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However, it has to be noted that in general condition (35) is independent of the 
non-relativistic limit, and then some care has to be taken before removing the last term 
of (33). For the moment we maintain that entire expression. 

5. Some properties of ihe non-relativistic model 

In this section we only give a few first results concerning the non-trivial solutions of 
(33), particularly the runaway and self-oscillating solutions. In most works about this 
subject, the translational motion included, this problem has been simplified by reducing 
it to the study of the solutions of type 

w i t )  = woe". (40) 

However, one.could think of much more general solutions with indefinitely increas- 
ing amplitudes and, maybe, time varying frequencies. In our case, one could even 
think of solutions whose direction would also change. We d o  not intend to solve these 
questions, but only to call attention to the fact that the study of solutions of type e'", 
that we undertake in the following, constitutes only a partial aspect of the prob!em. 

We consider two cases, in order to include both the runaway and the self-oscillating 
solutions: ( a )  Re v > 0 and (b )  Re v = 0. 

( a )  H e v > O  

Substituting (34) in (33) we have 

d t ' G ( t -  t ' )w,vexp(vt ')  

G( t ' )w,vexp[v( t -  t ' ) ]  dt ' ,  

whence 
7 -  Zmec=-$ne -G(v) ,  

GCv) being the Laplace transform of G. 
As Re v > 0, we may calculate explicitly 6( v )  from (296):  

k 2  
6 ( v ) = 4 r  lox dk[p"(kj]'-- v 2 +  kZc" 

(41) 

(42) 

(43 j 

From (42) two equations are obtained, 

I,,,=-!ne'Re d ( v ) ,  (440) 

where vR and vI are the real and imaginary parts of v. Since vR > 0, equation (44b) 
implies v, = 0. Then Re 6(  v )  = 6( v )  > 0, and  (440) has no solutions, because Imec> 0. 
The conclusion is clear: no runaway solution of the form oo e'' can be found. 
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( b )  R e v = O  

We put v = i A .  The calculation of G(iA) must be modified, because 

where Vp denotes the Cauchy principal value. Therefore, in this case we obtain 

whence ( 4 2 )  gives 

0 = (2 . rr /c3)A[p"(A/c) ]* .  ( 4 7 b )  

I t  is trivial to see that A = 0  is not a solution. Unlike case (a ) ,  equation ( 4 7 a )  could 
have solutions and then self-oscillations are possible. 

The results we have obtained are similar to the ones for the translational motion 
but there are some important differences. As concerns the runaway solutions, instead 
of equation ( 4 4 a )  we obtain a similar one with the very important difference that the 
mass on the left of the equation (that appears in the translational motion instead of 
the moment of inertia) includes a renormalisation term which can make it take negative 
values. Consequently, the corresponding equation may have solutions. In our case, 
the renormalisation term does not exist and solutions are not possible. Concerning 
the self oscillations, the non-negativity of the moment of inertia does not prevent 
equation ( 4 7 a )  having solutions. Finally, in both cases, p' appears in the translational 
case, instead of b'. 

6. Analysis of the non-relativistic charge in presence of an external field 

If there is an external field acting on the charge, we may repeat the calculations of 
5 2 .  It suffices to replace the self-fields by the total fields, E, , ,+  E,,, and B ( s , +  Be,,, in 
equation ( 2 2 ) .  The result is the inclusion in the R H S  of (33) of a new term, Me,,, which 
can be written as 

J ' J  

where we have assumed that the external field only produces rotation, that is, the net 
external force acting on the whole charge is zero. 

In the following, we only analyse two cases: (a )  Me,, = constant, and ( b )  E,,, = 0 
and Be,, = constant. 

( a )  M"' constant. Renormalisation of I 

Here we are mainly interested in the occurrence of a phenomenon which is similar to 
the mass renormalisation appearing in the case of the purely translational motion. It 
is assumed that Me,, is small enough, so that the quadratic term in w of (33) can be 
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neglected. Then this equation becomes 

I mec h = - ! r e 2  5 ’ dt’ G( t - t ’ ) h (  t ‘ )  + Me,,, 
-a 

(49) 

the solution of which is trivially 

h = Me,,/ I ,  (50) 

where I, is an  effective or  renormalised moment of inertia, and  is given by 

I,= JOm G ( t )  d t  = I,,,+ 7. 

Even if we consider the two terms on the RHS of (33), in the case that w ( 0 )  is 
parallel to Me,,, the expression (50) is still the correct solution. Let us see now what 
is the meaning of the additional term 7 of (51). 

Using ( 2 9 a )  it is easy to see that 

After some algebra (see appendix 3), we can state the next relation 

where 

j ( r ,  t )  = p ( r ) [ w ( t )  x r ( r ) l .  (54) 

The meaning of 9 remains clear in the case where w = constant: 9 is the magnetic 
energy of self-interaction of the charge. The renormalised energy of rotation can be 
written as 

~ , ~ ~ = ~ z ~ ~ ~ = ~ z ~ ~ ~ w ~ + ~ ~ ~ * = ~ z ~ e c ~ ~ + 9 .  (55) 

We see the resemblance with the translational case, in which the electrostatic 
self-energy has to be added to the purely mechanical one, in order to account for the 
actually observed mass (FranGa et a1 1978, de  la Peiia et a1 1982, Rohrlich 1965, 
Alvarez-Estrada and Ros Martinez 198 1 ) .  However, unlike the translational case, if 
we apply a torque at time t = 0 to a particle at constant angular velocity (&( t’) = 0,  t‘ < 0 ) ,  
it is easy to see from equation (49) that the inertia immediately after t = 0 has a purely 
mechanical origin. Since I,,,> 0, this is the essential reason for the non-existence of 
runaway solutions. On the contrary, in the translational case the inertia immediately 
after the application of an  external force includes a part of the electromagnetic mass 
(de  la Pefia et a1 1982), in such a way that it can take negative values and runaway 
solutions are possible. 

( b )  Constant magnetic field 

In presence o f  a constant magnetic field, the external torque can be written 

(56) Me,, = Rw x B 
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where 

stands for the magnetic moment of the charge. 
Similarly to the former case, we assume that B is not too large in order to neglect 

the quadratic term in w of equation (33). Then in this case the equation of motion is 

’ :ne2 dt’  G( t - t’)b( t ’ )  + *.Zw x B t > to ,  ( 5 8 )  ImecW = - -  I,‘ 
where we assume that the field B is switched on at t = to, and that for t < to, C j  = 0. 

ing w in this basis, 
Considering now three right-handed orthonormal vectors, e , ,  e2 and B/IBI, expand- 

= ( U , ,  w2, q), 

and defining the complex quantity 

R = w ,  + iw,, (59) 

the three equations (58)  can be separated into two parts 

Imecfi = -:re- d t ’  G ( t  - r’)h( r ’ )  - . I B i n (  t ) ,  t > to. (60b)  f,: 
The first of these equations admits only the trivial solution wl l  = constant (Petrovski 
1957). As concerns the second one, we can use the Laplace transform method to obtain 
the solutions, putting to = 0 for the sake of simplicity. However, our main goal is the 
know!edge of the statimary regime of the solutioiis. For this, it is preferable to set 
to = -a and to use the Fourier transform. 

Introducing the new kernel 

G‘O’( t )  = G ( f ) B ( f ) ,  (61) 

6 being the Heaviside jump function, the equation of motion for n( t )  can be written 

and its Fourier transform 

with 
X 

f ( A )  = I f( t )  elhf dt. 
--r 

Then 

0 ( A  )[ - i  A ( I,,, + re2-( A )) + .A Bi] = 0, (65) 
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whence if follows that 

and 

R(  t )  = (27r-I 1 R,  exp(-iA,t)(it)kr-' 

where the A,'s are the real zeros of the coefficient of 
multiplicities. 

Now, taking into account (61) and (64), we obtain 

G " ( A )  = G(-iA) 

whence the A,'s fulfil the following equations: 
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(66) 

(67) 

a(A) in (65), and  k, their 

Again A = 0 is not a solution. Then the actual frequencies A, are those ones that fulfil 
(69a) and  

(69 6 ' )  ;'(A,/ c) = 0. 

In consequence, generally speaking, there will be solutions for only particular 
values of B. In  the other cases R = 0 for t -+ CO. 

To sum up, for the total solution of equation (58), we can say that, in general, after 
the transient, it has the form w = oil =constant, except for some special values of B 
for which a precession of the angular velocity w about the direction of B can exist, 
depending on whether or  not p" vanishes. That is, in general, the angular velocity w 
aligns itself with the magnetic field. 

Furthermore w = wll  =constant remains the stationary solution if we include in the 
equation of motion the quadratic term in w of (33), unless precession occurs. In this 
case the transient behaviour should be studied. It is to be hoped that the unique form 
for the stationary regime of the solution will be w = wll =constant. 

7. Conclusions and discussion 

The fundamental aspect of the present work is the attainment of the equation of 
rotational motion as a relation between tensor quantities, which guarantees its Lorentz 
invariant character. This allows us to obtain the correct form of the non-relativistic 
limit for that motion. With respect to previous work about the rotation of extended 
charges, the results we have obtained enable us to draw the following conclusion, 
namely, that equation (331, which is presented in Daboul and Jensen (19731, Daboul 
(1975) and  Raiiada and  Vazquez (1982, 1984) as though it was exact, appears to be 
valid only in the low-velocity limit. 

The essential reason for this is, besides the incoherence of dealing with a rigid 
structure, that the charge derisity appearing in equation (23), p * ,  is velocity dependent, 
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whilst equation (33) is only valid if one neglects this dependence, which can be done, 
in general, only if U < <  c. 

We have also studied some properties of the motion of the charge both in absence 
of external fields and in presence of constant external torque and constant magnetic 
field. 

We have found that in the free case, self-oscillations may or  may not exist depending 
on the shape of the charge distribution. In any case, it is hoped that such solutions 
will decrease when an  exact equation is considered. In principle we should agree with 
Daboul and  Jensen (1973) and Daboul (1975), in the sense that the charge is expected 
to radiate indefinitely until the lowest energy state is attempted. However, it is well 
known that non-radiating confined (see e.g. Devaney and Wolf 1973) and unconfined 
(Fargue 1981) current distributions exist in the context of relativity theory. Then the 
question arises whether or not a coherent more refined model of extended charge will 
admit exactly non-radiating solutions. 

In the presence of a constant magnetic field, the vector aligns itself with the field, 
the value of the parallel component remaining unchanged ; the evolution is such that 
the normal component vanishes. Exceptions to this behaviour are found, in which the 
angular velocity precesses about B if the field strength takes some particular values. 

The features we have found in the rotational motion are very similar to the ones 
that appear in the translational motion. However, some differences are found. For 
instance, translational self-oscillations appear in frequencies that cancel the corre- 
sponding Fourier component of the charge density whilst the rotational ones cancel 
the derivative of the Fourier components. 

The most important difference emerges in the question of the runaway solutions. 
Translational motion does have these, contrary to rotational motion that does not. 
The reason lies in the fact that the initial inertia is different in the two cases. In the 
translational case the existence of runaway solutions depends on the sign of this inertia 
that includes part of the renormalisation, whereas in the rotational motion the equivalent 
magnitude, the mechanical moment of inertia, is always positive. Further investigation 
is needed to analyse the physical reasons for this difference. 

Another question arises in connection with the solution of equation (33). It is 
obvious that w = constant satisfies it. However, it represents a motion where all points 
of the charge are continuously accelerated, and then, in general, radiation exists. 
Therefore the charge should tend to stop the motion, which is not the case. One could 
think that releasing rigidity and  low-velocity conditions would eliminate w = constant 
as a solution. However, it is easy to see that this is not true. If one considers, as is 
physically reasonable, that a non-rigid charge would have, if rotating at constant 
angular velocity, cylindrical symmetry, it is easy to see that again w =constant is a 
relativistically exact solution. An explanation is found because in that case no quantity 
depends on t and the fields the charge creates outside its domain go as when r 
tends to infinity. Then the charge does not radiate energy, contrary to what one would 
have expected. 
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Appendix 1 
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We want to calculate the expression 

Let us make the change r ’ -  r = R. With the notation n ( R )  = cj( t - R / c ) ,  we have 

r x [ n ( R ) x ( r + R ) ] =  r 2  - n ( R ) + r . ( R I I - n R ) .  (A1.2) 

The RHS of ( A l . l )  may be separated into two parts 

N : ’ =  - ( e 2 / c 2 ) ( N l + N 2 )  

with 

(A1.3) 

(A1.4) 

(A1.5) 

Let us first calculate NI.  Calling 

r ( R )  = 5 d 3 r p ( r ) p ( / r + R l ) r ,  (A1.6) 

N ,  can be written 

N I =  d ’ R R - l ( n R - R I I )  * T ( R ) .  (A1.7) 5 

5 
We are going to show that r ( R )  is a vector in the direction of R. Let U and U form 
with R / R  an  orthonormal basis in R’. We shall prove that r U = r U = 0. Let us write 

r * U = d ’ r p ( r ) p ( / r +  R1)r .  U. (A1.8) 

Let us make the following change. If r = x,u + X,U + x,R/ R,  let r’ = -x,u + x,u + x,R/ R .  
Then 

Iri = I d  and / r +  RI = / r ’ + R l .  

Consequently 

r -  U =  d 3 r ‘ p ( r ’ ) p ( l r ’ + R I ) ( - ) r ’ . u = - r .  u = O  5 
and the same for r * U. 

Therefore 

T ( R )  = (r * R / R 2 ) R  = ( ( R ) R / R  (A1.9) 
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(n R~ - RR . n) 
R 

where d R R  denotes the element of solid angle in the direction of R. 
Now, let 

TI( R ) = d R  R ( I - RR/  R ’). I 
If we make in this integral the following change 

R’  = 9 R ,  

where 3 denotes a rotation, it is easy to see that 

TI ( R )  = 9 - I  T( R ) 9 ,  

whence it follows that T is a multiple of the identity 

TI . n = f T r ( T , ) n  

and 

Tr( 7,) = 2 dRR = 87r. I 
Finally 

N ,  = f~ Iox R2[( R ) h (  t - R / c )  d R  

with 

Let us consider now N2. Calling 

equation (A1.5) may be written 

N 2 =  [‘dR R I I ( R ) .  T2(R) .  
j o 

(A1.lO) 

( A l . l l )  

(A1.12) 

(Al.13) 

(A1.14) 

(A1.15) 

(Al .  16) 

(Al .  17) 

(A1.18) 

(A1.19) 

Now, an argument similar to the one developed for T , ( R )  allows us to conclude 
that T2(R)  is also a multiple of the identity 

yz,( R ) n (  R )  = f Tr( y2)II( R )  
c c 

(A 1.20) 
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whence 

(A1.21) 

where 

@ ( R )  = d3r rp ( r )p ( / r+Rl ) r2 .  ( A  1.22) 1 
Finally, taking into account (A1.16), (A1.17), (A1.21) and (A1.22), we obtain 

Let now 

G ( t ) =  t d ' r p ( r ) p ( l r + R I ) ( r .  R+r*)l.=.,. i 
Equation (A1.23) can be written 

N;'  = - : r e z  j: dr' G(  t ')h( t - t ' )  

- ! r e 2  [ '  d t '  G(t  - t ')h(r').  - - 

J -= 

(A1.24) 

Now, we only have to prove that this functior. G coincides with the one expressed 
in relation (29b).  For this we substitute in equation (A1.24) p (r )  by expression (30) 

d3k'(8x'))- 'p'(k)p'(k') e'"" exp[ik'. ( r + R ) ] ( r .  R + r 2 ) .  
(Al .25)  

But 

(re ~ + r ' )  e ' k ' r = ( - i ~ - ~ k - ~ k )  elk.', (A  1.26) 

whence, making an integration by parts, and integrating over r, we obtain 

G ( t ) =  t d 3 k d 3 k ' [ ( i R . V , - ~ , ) p ' ( k ) ] p ' ( k ' )  exp( ik ' .  R)fj3[k-k')  

= t I d ' k [ ( i R * V , - h , ) i ( k ) ] p ' ( k )  exp(-ik- R). 

s 
Now, in the term with the Laplacian, we again integrate by parts 

d3k(Akp)p(k)  e-'k'R = - d 3 k ( V k j )  .o,(fi e - ' k 'R)  5 
+ d'k iR(V,p')b e-'h'R, I = -I d3k(p")2 e-ik.R 

(Al .27)  

(Al.27') 
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where we have used that p ’ ( k )  = p’(lk1) = ; ( I C ) .  We then obtain 

G( t )  = t d’k[p’’( k)]’  e-lk’RIR=c,. 5 
Integrating over solid angle take us finally to 

G(  t )  = ( 4 ~ /  c )  lox dk  k[p’’( k)]’ sin (kcr), 

which is the required expression. 

Appendix 2 

We are going to calculate 

N(BSi = ( e / c )  d 3 r p ( r ) r .  B ( S , (  r, t ) ( w (  1 )  x r ) ,  5 
where B(s j  is given by 

(A1.28) 

(A2.1) 

(A2.2) 

Let us make the change r’- r = R, and use equation (30) calling w (  t - R / c )  = 0,: 

where the gradients act over everything on their right. Integrating by parts, we have 

(A2.4) 

Again, it is easy to see that T3(R) is a multiple of the identity. Then 

73(R)=fTrCT3(R)I, 
whence 

p t ( k )  e - ~ k . i r t R )  e-ik’.rk-l[k2 2 r - ( k  r)’]oR. (A2.7) 
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Introducing the differential operator D,, ( k )  

Dk ( k )  cp ( k ’ )  = [ - k’V k * Vk + ( k  * VI, )*]p ( k ’ )  (A2.8) 

and making an  integration by parts over k‘ ,  equation (A2.7) may be written as follows: 

e’ 
877 c 

N(B’= - T w ( t )  x f  Jox R d R  J d o R  J d3k J” d’k’ 1 d3r 

from which, integrating over r and k’, it results that 

(A2.10) 

A straightforward calculation gives 

Dk,( k)p’(  k ‘ ) l k , = k  = -2kp’(k), 

whence 

and integrating over the solid angle R R ,  we finally obtain expression (286). 

Appendix 3 

We want to prove equation (53). Substituting the expression (54) and using 

( a  x b )  * ( a  x c )  = a’(b.  c ) - ( a .  b ) ( d  c )  

we obtain 

3= w( t )T ,  w(t)e2 /2c‘  

where 

Again, y4 is a multiple of the identity and then 

which gives equation (53). 
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